
Building Simulation Software for the Next Decade:
Trends and Tools

Hans Petter Langtangen

Center for Biomedical Computing (CBC)
at Simula Research Laboratory

Dept. of Informatics, University of Oslo

September 2, 2013

Problem: scientists are scientists

Greg Wilson, Univ. of Toronto, 2010:

Unfortunately, most scientists are never taught how to use
computers effectively. After a generic first-year programming
course, and possibly a numerical methods or statistics course later
on, graduate students and working scientists are expected to figure
out for themselves how to build, validate, maintain, and share
complex programs. This is about as fair as teaching someone
arithmetic and then expecting them to figure out calculus on their
own, and about as likely to succeed.

Outline

Programming technologies

FEniCS: software for creating mechanistic models

Ways of dealing with complexity

Reproducible computational science

Most scientific software is written in Fortran (77) – and
faces aging problems

Classical technologies (”low level languages”)

Fortran 77:

only primitive data types
long argument lists in subroutines
easy to interface libraries

C (and Fortran 90):

struct: grouping variables in a new variable
short argument lists
challenge: different libs use different structs

C++:

class: struct with (local) functions
object-oriented programming: extremely popular
challenge: too many classes, different libs use different classes

Java, C#: as C++, popular, but little impact in science

Classical technologies (”low level languages”)

Fortran 77:

only primitive data types
long argument lists in subroutines
easy to interface libraries

C (and Fortran 90):

struct: grouping variables in a new variable
short argument lists
challenge: different libs use different structs

C++:

class: struct with (local) functions
object-oriented programming: extremely popular
challenge: too many classes, different libs use different classes

Java, C#: as C++, popular, but little impact in science

Classical technologies (”low level languages”)

Fortran 77:

only primitive data types
long argument lists in subroutines
easy to interface libraries

C (and Fortran 90):

struct: grouping variables in a new variable
short argument lists
challenge: different libs use different structs

C++:

class: struct with (local) functions
object-oriented programming: extremely popular
challenge: too many classes, different libs use different classes

Java, C#: as C++, popular, but little impact in science

Classical technologies (”low level languages”)

Fortran 77:

only primitive data types
long argument lists in subroutines
easy to interface libraries

C (and Fortran 90):

struct: grouping variables in a new variable
short argument lists
challenge: different libs use different structs

C++:

class: struct with (local) functions
object-oriented programming: extremely popular
challenge: too many classes, different libs use different classes

Java, C#: as C++, popular, but little impact in science

Classical technologies (”low level languages”)

Fortran 77:

only primitive data types
long argument lists in subroutines
easy to interface libraries

C (and Fortran 90):

struct: grouping variables in a new variable
short argument lists
challenge: different libs use different structs

C++:

class: struct with (local) functions
object-oriented programming: extremely popular
challenge: too many classes, different libs use different classes

Java, C#: as C++, popular, but little impact in science

Last decade: great and growing popularity of
”Matlab-style” environments

Matlab, Maple, Mathematica, R, IDL, Python, Scilab, ...
make scientists more productive

Why? Convenience, no declaration of variables, rich libraries,
built-in visualization, much less and nicer code

Downside: not as fast as Fortran, C, C++

(No declaration of variables solves the problem that F90, F2003, C++,

Java, C# apply advanced constructs (object-oriented/generic

programming) to solve...)

Last decade: great and growing popularity of
”Matlab-style” environments

Matlab, Maple, Mathematica, R, IDL, Python, Scilab, ...
make scientists more productive

Why? Convenience, no declaration of variables, rich libraries,
built-in visualization, much less and nicer code

Downside: not as fast as Fortran, C, C++

(No declaration of variables solves the problem that F90, F2003, C++,

Java, C# apply advanced constructs (object-oriented/generic

programming) to solve...)

Last decade: great and growing popularity of
”Matlab-style” environments

Matlab, Maple, Mathematica, R, IDL, Python, Scilab, ...
make scientists more productive

Why? Convenience, no declaration of variables, rich libraries,
built-in visualization, much less and nicer code

Downside: not as fast as Fortran, C, C++

(No declaration of variables solves the problem that F90, F2003, C++,

Java, C# apply advanced constructs (object-oriented/generic

programming) to solve...)

Combining the best of all worlds...

Wish:

One would like the convenience and high-level
code of Matlab combined with the language
power of Fortran and C++.

A possible answer: Python

Supports all major programming styles

May look similar to Matlab
Has all the advanced flexibility of C++

Supports large-scale codes

Emphasizes array-based computing

A glue of Fortran/C++/Matlab

Combining the best of all worlds...

Wish:

One would like the convenience and high-level
code of Matlab combined with the language
power of Fortran and C++.

A possible answer: Python

Supports all major programming styles

May look similar to Matlab
Has all the advanced flexibility of C++

Supports large-scale codes

Emphasizes array-based computing

A glue of Fortran/C++/Matlab

Combining the best of all worlds...

Wish:

One would like the convenience and high-level
code of Matlab combined with the language
power of Fortran and C++.

A possible answer: Python

Supports all major programming styles

May look similar to Matlab
Has all the advanced flexibility of C++

Supports large-scale codes

Emphasizes array-based computing

A glue of Fortran/C++/Matlab

Python is a convenient programming environment

Python is a convenient programming environment

Python is a convenient programming environment

Python is a convenient programming environment

Python is a convenient programming environment

Python is a convenient programming environment

Python is a convenient programming environment

Python is a convenient programming environment

General or specialized programs?

One specialized program for each
equation/model?

One general program for all
equations/models?

One general program for generating
specialized programs
(Yes! – the FEniCS idea)

General or specialized programs?

One specialized program for each
equation/model?

One general program for all
equations/models?

One general program for generating
specialized programs
(Yes! – the FEniCS idea)

General or specialized programs?

One specialized program for each
equation/model?

One general program for all
equations/models?

One general program for generating
specialized programs
(Yes! – the FEniCS idea)

General or specialized programs?

One specialized program for each
equation/model?

One general program for all
equations/models?

One general program for generating
specialized programs
(Yes! – the FEniCS idea)

FEniCS solves PDEs by the finite element method

Input: finite element formulation of the PDE problem∫
Ω∇u · ∇v dx +

∫
Ω fv dx in Python

Output: C++ code loaded back in Python

Python module with C++ def. of element matrix/vector, linked to
finite element and linear algebra libraries

FEniCS solves PDEs by the finite element method

Input: finite element formulation of the PDE problem∫
Ω∇u · ∇v dx +

∫
Ω fv dx in Python

Output: C++ code loaded back in Python

Python module with C++ def. of element matrix/vector, linked to
finite element and linear algebra libraries

FEniCS solves PDEs by the finite element method

Input: finite element formulation of the PDE problem∫
Ω∇u · ∇v dx +

∫
Ω fv dx in Python

Output: C++ code loaded back in Python

Python module with C++ def. of element matrix/vector, linked to
finite element and linear algebra libraries

FEniCS tries to combine four contradictory goals

Simplicity∫
Ω a∇u · ∇v dx → inner(a*grad(u), grad(v))*dx

Generality

Linear a(u, v) = L(v) or nonlinear F (u; v) = 0 variational problem

Efficiency

Generated C++ code tailored to the problem + efficient
third-party libraries (PETSc, Trilinos, ...)

Reliability

Given a goal M(u) and tolerance ε, compute u such that

||M(ue)−M(u)|| ≤ ε (ue: exact sol.)

Generality Efficiency

Code Generation

FEniCS tries to combine four contradictory goals

Simplicity∫
Ω a∇u · ∇v dx → inner(a*grad(u), grad(v))*dx

Generality

Linear a(u, v) = L(v) or nonlinear F (u; v) = 0 variational problem

Efficiency

Generated C++ code tailored to the problem + efficient
third-party libraries (PETSc, Trilinos, ...)

Reliability

Given a goal M(u) and tolerance ε, compute u such that

||M(ue)−M(u)|| ≤ ε (ue: exact sol.)

Generality Efficiency

Code Generation

FEniCS tries to combine four contradictory goals

Simplicity∫
Ω a∇u · ∇v dx → inner(a*grad(u), grad(v))*dx

Generality

Linear a(u, v) = L(v) or nonlinear F (u; v) = 0 variational problem

Efficiency

Generated C++ code tailored to the problem + efficient
third-party libraries (PETSc, Trilinos, ...)

Reliability

Given a goal M(u) and tolerance ε, compute u such that

||M(ue)−M(u)|| ≤ ε (ue: exact sol.)

Generality Efficiency

Code Generation

FEniCS tries to combine four contradictory goals

Simplicity∫
Ω a∇u · ∇v dx → inner(a*grad(u), grad(v))*dx

Generality

Linear a(u, v) = L(v) or nonlinear F (u; v) = 0 variational problem

Efficiency

Generated C++ code tailored to the problem + efficient
third-party libraries (PETSc, Trilinos, ...)

Reliability

Given a goal M(u) and tolerance ε, compute u such that

||M(ue)−M(u)|| ≤ ε (ue: exact sol.)

Generality Efficiency

Code Generation

FEniCS tries to combine four contradictory goals

Simplicity∫
Ω a∇u · ∇v dx → inner(a*grad(u), grad(v))*dx

Generality

Linear a(u, v) = L(v) or nonlinear F (u; v) = 0 variational problem

Efficiency

Generated C++ code tailored to the problem + efficient
third-party libraries (PETSc, Trilinos, ...)

Reliability

Given a goal M(u) and tolerance ε, compute u such that

||M(ue)−M(u)|| ≤ ε (ue: exact sol.)

Generality Efficiency

Code Generation

”Hello, world!” for PDEs: −∇ · (k∇u) = f

−∇ · (k∇u) = f in Ω

u = g on ∂ΩD

−k
∂u

∂n
= α(u − u0) on ∂ΩR

Variational problem: find u ∈ V such that

F =

∫
Ω

k∇u · ∇vdx −
∫

Ω
fvdx +

∫
∂ΩR

α(u − u0)vds = 0 ∀ v ∈ V

Implementation:

F = inner(k*grad(u), grad(v))*dx - f*v*dx + alpha*(u-u0)*v*ds

http://en.wikibooks.org/wiki/Computer_Programming/Hello_world

”Hello, world!” for PDEs: −∇ · (k∇u) = f

−∇ · (k∇u) = f in Ω

u = g on ∂ΩD

−k
∂u

∂n
= α(u − u0) on ∂ΩR

Variational problem: find u ∈ V such that

F =

∫
Ω

k∇u · ∇vdx −
∫

Ω
fvdx +

∫
∂ΩR

α(u − u0)vds = 0 ∀ v ∈ V

Implementation:

F = inner(k*grad(u), grad(v))*dx - f*v*dx + alpha*(u-u0)*v*ds

http://en.wikibooks.org/wiki/Computer_Programming/Hello_world

”Hello, world!” for PDEs: −∇ · (k∇u) = f

−∇ · (k∇u) = f in Ω

u = g on ∂ΩD

−k
∂u

∂n
= α(u − u0) on ∂ΩR

Variational problem: find u ∈ V such that

F =

∫
Ω

k∇u · ∇vdx −
∫

Ω
fvdx +

∫
∂ΩR

α(u − u0)vds = 0 ∀ v ∈ V

Implementation:

F = inner(k*grad(u), grad(v))*dx - f*v*dx + alpha*(u-u0)*v*ds

http://en.wikibooks.org/wiki/Computer_Programming/Hello_world

”Hello, world!” for PDEs: −∇ · (k∇u) = f

−∇ · (k∇u) = f in Ω

u = g on ∂ΩD

−k
∂u

∂n
= α(u − u0) on ∂ΩR

Variational problem: find u ∈ V such that

F =

∫
Ω

k∇u · ∇vdx −
∫

Ω
fvdx +

∫
∂ΩR

α(u − u0)vds = 0 ∀ v ∈ V

Implementation:

F = inner(k*grad(u), grad(v))*dx - f*v*dx + alpha*(u-u0)*v*ds

http://en.wikibooks.org/wiki/Computer_Programming/Hello_world

The complete ”Hello, world!” program

from dolfin import *

mesh = Mesh(’mydomain.xml.gz’)

V = FunctionSpace(mesh , ’Lagrange ’, degree=1)

dOmega_D = MeshFunction(’uint’, mesh , ’myboundary.xml.gz’)

g = Constant(0.0)

bc = DirichletBC(V, g, 1, dOmega_D)

u = TrialFunction(V)

v = TestFunction(V)

f = Constant(2.0)

k = Expression(’A*x[1]*sin(pi*q*x[0])’, A=4.5, q=1)

alpha = 10; u0 = 2

F = inner(k*grad(u), grad(v))*dx - f*v*dx + alpha*(u-u0)*v*ds

a = lhs(F); L = rhs(F)

u = Function(V) # finite element function to compute

solve(a == L, u, bc)

plot(u)

http://www.gnu.org/fun/jokes/helloworld.html

Example of an autogenerated element matrix routine

Fluid flow ”Hello, world!”: Stokes’ problem

Stokes’ problem for slow viscous flow:

−∇2u +∇p = f

∇ · u = 0

Variational problem: find (u, p) ∈ V × Q such that

F =

∫
Ω

(∇v · ∇u −∇ · v p + v · f) dx+∫
Ω

q∇ · u dx = 0 ∀ (v , q) ∈ V × Q

Fluid flow ”Hello, world!” code

V = VectorFunctionSpace(mesh , ’Lagrange ’, 2)

Q = FunctionSpace(mesh , ’Lagrange ’, 1)

W = V * Q # Taylor -Hood mixed finite element

v, q = TestFunctions(W)

u, p = TrialFunctions(W)

f = Constant ((0, 0))

F = (inner(grad(v), grad(u)) - div(v)*p + q*div(u))*dx + inner(v, f)*dx

a = lhs(F); L = rhs(F)

up = Function(W)

solve(a == L, up, bc) # solve variational problem

or

A = assemble(a); b = assemble(L)

solve(A, up.vector (), b) # solve linear system

u, p = up.split ()

Again, code ≈ math

Key mathematical formula:

F =

∫
Ω

(∇v · ∇u −∇ · v p + v · f) dx +

∫
Ω

q∇ · u dx

Key code line:

F = (inner(grad(v), grad(u)) - div(v)*p + inner(f,v)*dx + q*div(u))*dx

FEniCS supports a rich set of finite elements

Lagrangeq (Pq), DGq, BDMq, BDFMq, RTq, Nedelec

1st/2nd kind, Crouzeix–Raviart, Arnold-Winther, PqΛk ,
P−
q Λk , Morley, Hermite, Argyris, Bell, ...

Parallel computing

Distributed computing via MPI:

Terminal> mpirun -n 32 python myprog.py

Shared memory via OpenMP:

In program

parameters[’num_threads ’] = Q

Automated error control

Input

a(u, v) = L(v) or
F (u; v) = 0

Goal M(u)

ε > 0

Output

u such that

‖M(ue)−M(u)‖ ≤ ε

(ue: exact solution)

Example: compute shear stress in a bone implant

Polymer-fluid mixture

Nonlinear hyperelasticity

Complicated constitutive law

Novel mixed
displacement-stress
discretization via
Arnold-Winther element

Adaptivity pays off – but would be really difficult to
implement by hand in this case

Some applications of FEniCS

Fluid flow Hyperelasticity Fluid-structure

Mantle flow Electrophysiology Block prec.

How to deal with complexity in a software system

Most scientific packages are monolithic and do ”everything” in a
huge infrastructure of code

Recall the Unix philosophy (Doug McIlroy):

Write programs that do one thing and do it well. Write programs
to work together. Write programs to handle text streams, because
that is a universal interface.

Applied to scientific programming:

Write modules that do one thing and do it well. Write modules to
work together. Write modules to handle arrays, text streams +
heterogeneous lists and hash tables, because that is a universal
interface.

How to deal with complexity in a software system

Most scientific packages are monolithic and do ”everything” in a
huge infrastructure of code

Recall the Unix philosophy (Doug McIlroy):

Write programs that do one thing and do it well. Write programs
to work together. Write programs to handle text streams, because
that is a universal interface.

Applied to scientific programming:

Write modules that do one thing and do it well. Write modules to
work together. Write modules to handle arrays, text streams +
heterogeneous lists and hash tables, because that is a universal
interface.

How to deal with complexity in a software system

Most scientific packages are monolithic and do ”everything” in a
huge infrastructure of code

Recall the Unix philosophy (Doug McIlroy):

Write programs that do one thing and do it well. Write programs
to work together. Write programs to handle text streams, because
that is a universal interface.

Applied to scientific programming:

Write modules that do one thing and do it well. Write modules to
work together. Write modules to handle arrays, text streams +
heterogeneous lists and hash tables, because that is a universal
interface.

How to deal with complexity in a software system

Most scientific packages are monolithic and do ”everything” in a
huge infrastructure of code

Recall the Unix philosophy (Doug McIlroy):

Write programs that do one thing and do it well. Write programs
to work together. Write programs to handle text streams, because
that is a universal interface.

Applied to scientific programming:

Write modules that do one thing and do it well. Write modules to
work together. Write modules to handle arrays, text streams +
heterogeneous lists and hash tables, because that is a universal
interface.

Let code generation deal with complex architectures

Cluster/multi-core/GPU programming is technically
complicated and error-prone

Let a program read the problem specification and generate
complicated, low-level code

Every time you encounter complex syntax: think of a program
for generating the syntax

Code generation makes expert knowledge available to many

Key issues for making impact with software

A common software platform accelerates research

Distribute your software - it gives impact!

Theory and user documentation gives impact too

Make a simple/manageable build process

Or provide a binary executable
(maybe just for one platform)

Get attention by regular releases

Open source with (Git) version control system

Comprehensive test suite (automatic)

One-command build and test for developers

Open design for integration in other systems

Key issues for making impact with software

A common software platform accelerates research

Distribute your software - it gives impact!

Theory and user documentation gives impact too

Make a simple/manageable build process

Or provide a binary executable
(maybe just for one platform)

Get attention by regular releases

Open source with (Git) version control system

Comprehensive test suite (automatic)

One-command build and test for developers

Open design for integration in other systems

Key issues for making impact with software

A common software platform accelerates research

Distribute your software - it gives impact!

Theory and user documentation gives impact too

Make a simple/manageable build process

Or provide a binary executable
(maybe just for one platform)

Get attention by regular releases

Open source with (Git) version control system

Comprehensive test suite (automatic)

One-command build and test for developers

Open design for integration in other systems

Key issues for making impact with software

A common software platform accelerates research

Distribute your software - it gives impact!

Theory and user documentation gives impact too

Make a simple/manageable build process

Or provide a binary executable
(maybe just for one platform)

Get attention by regular releases

Open source with (Git) version control system

Comprehensive test suite (automatic)

One-command build and test for developers

Open design for integration in other systems

Key issues for making impact with software

A common software platform accelerates research

Distribute your software - it gives impact!

Theory and user documentation gives impact too

Make a simple/manageable build process

Or provide a binary executable
(maybe just for one platform)

Get attention by regular releases

Open source with (Git) version control system

Comprehensive test suite (automatic)

One-command build and test for developers

Open design for integration in other systems

Key issues for making impact with software

A common software platform accelerates research

Distribute your software - it gives impact!

Theory and user documentation gives impact too

Make a simple/manageable build process

Or provide a binary executable
(maybe just for one platform)

Get attention by regular releases

Open source with (Git) version control system

Comprehensive test suite (automatic)

One-command build and test for developers

Open design for integration in other systems

Key issues for making impact with software

A common software platform accelerates research

Distribute your software - it gives impact!

Theory and user documentation gives impact too

Make a simple/manageable build process

Or provide a binary executable
(maybe just for one platform)

Get attention by regular releases

Open source with (Git) version control system

Comprehensive test suite (automatic)

One-command build and test for developers

Open design for integration in other systems

Key issues for making impact with software

A common software platform accelerates research

Distribute your software - it gives impact!

Theory and user documentation gives impact too

Make a simple/manageable build process

Or provide a binary executable
(maybe just for one platform)

Get attention by regular releases

Open source with (Git) version control system

Comprehensive test suite (automatic)

One-command build and test for developers

Open design for integration in other systems

Key issues for making impact with software

A common software platform accelerates research

Distribute your software - it gives impact!

Theory and user documentation gives impact too

Make a simple/manageable build process

Or provide a binary executable
(maybe just for one platform)

Get attention by regular releases

Open source with (Git) version control system

Comprehensive test suite (automatic)

One-command build and test for developers

Open design for integration in other systems

Key issues for making impact with software

A common software platform accelerates research

Distribute your software - it gives impact!

Theory and user documentation gives impact too

Make a simple/manageable build process

Or provide a binary executable
(maybe just for one platform)

Get attention by regular releases

Open source with (Git) version control system

Comprehensive test suite (automatic)

One-command build and test for developers

Open design for integration in other systems

Key issues for making impact with software

A common software platform accelerates research

Distribute your software - it gives impact!

Theory and user documentation gives impact too

Make a simple/manageable build process

Or provide a binary executable
(maybe just for one platform)

Get attention by regular releases

Open source with (Git) version control system

Comprehensive test suite (automatic)

One-command build and test for developers

Open design for integration in other systems

Is your computational science reproducible?

Are PhD students’ experiments reproducible?

Can anyone check, rerun and extend your results in 10 years?

Use a version control system (Git) for all software and paper
writing work

Use a site like GitHub, Bitbucket or Googlecode for
collaboration

Always automate simulation experiments (write scripts)

Do all research work in virtual machines

Archive the machines and link any paper to its machine

Force researchers to document how their work is reproducible

Goal: Make your computer work as serious as your theory,
field and lab work

Is your computational science reproducible?

Are PhD students’ experiments reproducible?

Can anyone check, rerun and extend your results in 10 years?

Use a version control system (Git) for all software and paper
writing work

Use a site like GitHub, Bitbucket or Googlecode for
collaboration

Always automate simulation experiments (write scripts)

Do all research work in virtual machines

Archive the machines and link any paper to its machine

Force researchers to document how their work is reproducible

Goal: Make your computer work as serious as your theory,
field and lab work

Is your computational science reproducible?

Are PhD students’ experiments reproducible?

Can anyone check, rerun and extend your results in 10 years?

Use a version control system (Git) for all software and paper
writing work

Use a site like GitHub, Bitbucket or Googlecode for
collaboration

Always automate simulation experiments (write scripts)

Do all research work in virtual machines

Archive the machines and link any paper to its machine

Force researchers to document how their work is reproducible

Goal: Make your computer work as serious as your theory,
field and lab work

Is your computational science reproducible?

Are PhD students’ experiments reproducible?

Can anyone check, rerun and extend your results in 10 years?

Use a version control system (Git) for all software and paper
writing work

Use a site like GitHub, Bitbucket or Googlecode for
collaboration

Always automate simulation experiments (write scripts)

Do all research work in virtual machines

Archive the machines and link any paper to its machine

Force researchers to document how their work is reproducible

Goal: Make your computer work as serious as your theory,
field and lab work

Is your computational science reproducible?

Are PhD students’ experiments reproducible?

Can anyone check, rerun and extend your results in 10 years?

Use a version control system (Git) for all software and paper
writing work

Use a site like GitHub, Bitbucket or Googlecode for
collaboration

Always automate simulation experiments (write scripts)

Do all research work in virtual machines

Archive the machines and link any paper to its machine

Force researchers to document how their work is reproducible

Goal: Make your computer work as serious as your theory,
field and lab work

Is your computational science reproducible?

Are PhD students’ experiments reproducible?

Can anyone check, rerun and extend your results in 10 years?

Use a version control system (Git) for all software and paper
writing work

Use a site like GitHub, Bitbucket or Googlecode for
collaboration

Always automate simulation experiments (write scripts)

Do all research work in virtual machines

Archive the machines and link any paper to its machine

Force researchers to document how their work is reproducible

Goal: Make your computer work as serious as your theory,
field and lab work

Is your computational science reproducible?

Are PhD students’ experiments reproducible?

Can anyone check, rerun and extend your results in 10 years?

Use a version control system (Git) for all software and paper
writing work

Use a site like GitHub, Bitbucket or Googlecode for
collaboration

Always automate simulation experiments (write scripts)

Do all research work in virtual machines

Archive the machines and link any paper to its machine

Force researchers to document how their work is reproducible

Goal: Make your computer work as serious as your theory,
field and lab work

Is your computational science reproducible?

Are PhD students’ experiments reproducible?

Can anyone check, rerun and extend your results in 10 years?

Use a version control system (Git) for all software and paper
writing work

Use a site like GitHub, Bitbucket or Googlecode for
collaboration

Always automate simulation experiments (write scripts)

Do all research work in virtual machines

Archive the machines and link any paper to its machine

Force researchers to document how their work is reproducible

Goal: Make your computer work as serious as your theory,
field and lab work

Is your computational science reproducible?

Are PhD students’ experiments reproducible?

Can anyone check, rerun and extend your results in 10 years?

Use a version control system (Git) for all software and paper
writing work

Use a site like GitHub, Bitbucket or Googlecode for
collaboration

Always automate simulation experiments (write scripts)

Do all research work in virtual machines

Archive the machines and link any paper to its machine

Force researchers to document how their work is reproducible

Goal: Make your computer work as serious as your theory,
field and lab work

Is your computational science reproducible?

Are PhD students’ experiments reproducible?

Can anyone check, rerun and extend your results in 10 years?

Use a version control system (Git) for all software and paper
writing work

Use a site like GitHub, Bitbucket or Googlecode for
collaboration

Always automate simulation experiments (write scripts)

Do all research work in virtual machines

Archive the machines and link any paper to its machine

Force researchers to document how their work is reproducible

Goal: Make your computer work as serious as your theory,
field and lab work

What have you learned?

Make a strategy for how you design, develop, maintain and
publish software

Matlab or C++? Consider Python with C++ or Fortran

Need to solve PDEs? Check out FEniCS at fenicsproject.org

Parts of your software are better generated by a program

Do all your work in a version control system

Link papers to virtual machines

