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SUMMARY

Gravity was measured at seven levels inside a submerged tower in Megget Water
Reservoir, Scotland. in an experiment to test the inverse square law of gravitation
over length scales from decimetres to tens of kilometres. The effects of Earth
rotation, the global mass distribution, natural topography and man-made structures
must be predicted at points outside the solid Earth, in order that that part of the
measured attraction which is due to water in the reservoir can be separately
identified. This attraction can be related to the Newtonian gravitational constant
because. unlike natural rock masses, the density of water can be reliably predicted.
This paper describes techniques aiming to determine all necessary corrections with a
differential accuracy of 5 nm.s % over a S0 m vertical interval in order to exploit the
10 nm.s™? accuracy available from LaCoste & Romberg gravity meters.

INTRODUCTION

'Big G’ experiments using water as the attracting test mass fall into two classes: those
where the measurement point is fixed and a mass of water moves (for example the
experiment in which a dry dock is filled, or the varying water level in a pump storage
reservoir - see Edge & Oldham in this volume), and those, like the Megget Water
experiment, where the attraction of a fixed mass of water is observed at different
distances. The lattér are inherently less tractable because the effect of all other
masses, most particularly the topography, also changes as the observing position Is
moved and the contribution of the water must be isolated from them. The only
redeeming feature of the second class of experiment is that the arttraction of the water
can amount to several milligals rather than only a few microgals, so that, in principie.
greater accuracy in estimating the gravitational constant can be achieved. Practicai
realisation of this potential requires accurate and reliable computation of the
attraction of all other masses.

CORRECTIONS FOR THE GLOBAL GRAVITY FIELD

Earth rotation and normal gravity

By first removing a reference gravitv field, the main analysis need only deal with the
anomalous gravity field. which is free of the effects of Earth rotation for
measurements made at rest in a frame rotating with the Earth. Heiskanen & Moritz
(1967) (H&M) give a closed tormula on p 76 for 'normal gravity’, y, determined on
the ellipsoid. This experiment evaluates it using the set of adopted parameters which
define the Geodetic Reference System 1980. Comparison with recent observed vaiues
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implies that the scale of GRS80 normal gravity is uncertain by less than 4 parts in
107. (Because this investigation is concerned with gravity differences, the accuracy of
the GRS80 gravity datum, only about 3900 nm.s 2. is not relevent to this experiment.)

Formulae used to determine the variation of normal gravity with height along the
ellipsoidal normal need some caution because most are given and derived as series
expansions and the accuracy required here is unusually large. H&M (p70) give a
closed formula due to Bruns for the first derivative of normal gravity along the
ellipsoidal normal. After some manipulation, it is
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Higher order derivatives generally involve approximations but a closed formula for
them is derived here, using confocal ellipsoidal polar coordinates (u.B.A) (H&M,
sections 1.19 & 1.20). A curve following the ellipsoidal normal is obtained by varying
u, essentially the semi-minor axis of the ellipsoids, and holding the other two
coordinates fixed. Consequently, closed formulae for higher derivatives of normal
gravity can be found by recasting Brun’s formula (eq 1) in ellipsoidal polar
coordinates and partially differentiating with respect to the minor axis. For example,
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The first term is obtained from Brun’s formula and the second is given after
manipulation to and from ellipsoidal coordinates by the exact expression
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Thus normal gravity can be calculated from a Tavlor expansion about its value on the
ellipsoid. For the location of the tower (¢ = 55°.49508367),

y(h) = 9815494767. - 3084.80777h + 0.000722939n" - 0.0000000303h% ... nm.s"2 (4)

The highest observation point in the tower lies 336.00m above sea level.
corresponding to an ellipsoidal height of about 390m. The quadratic term contributes
26.6 nm.s % to the gravity difference between the top and bottom of the tower but the
cubic term is negligible at 0.06 am.s 2. However, this computation of the gravity
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difference is a very significant 87 nm.s"? smaller than the one given by the standard

factor of 3086 nm.s */m adopted by the Bureau Gravimetric International.

The external effect of the anomalous gravity field

If the validity of the inverse square law is assumed, Laplace’s equation holds.
Predicting the external gravity field then only involves a surface integral of gravity
anomalies: no assumptions are needed about the internal distribution of density.

However, integration is not trivial. Measurements of the anomalous gravity field
are only available at discrete points on the Earth’s topographic surface, and the
integral can only be evaluated reliably if the anomalous field varies smoothly enough
for valid interpolation between observations. The anomalous gravity field varies both
because of lateral variations in subsurface rock density and because of the complex,
non-ellipsoidal shape of the Earth’s surface. Although the long wavelength
components of the anomalous gravity field can be satisfactorily modelled as a finite
spherical harmonic series, the effect of local topography generally predominates at
short wavelengths. If great accuracy is required, this frustrates any attempt at direct
integration for all but topographically benign regions: gravity observations cannot
practically be made close enough together to recover short wavelength variations in
ground height.

The difficulty can usually be circumvented by removing the calculated
gravitational attraction of a model which represents the topographic geometry but
assigns it a constant density. The difference between the observed 'free air’ gravity
anomalies and the attraction of the model topography are then related only to
deviations from the assigned topographic density, together with lateral density
variations at deeper levels. The short wavelength component of these 'complete
Bouguer anomalies’ is very greatly reduced compared with ‘free air anomalies’.
Consequently, the distance over which the anomalous gravity field can be adequately
interpolated is increased and the maximum distance separating gravity observations
become feasible.

The external effect of the anomalous gravity field was thus computed in three
parts: first, the effect of long wavelength, global components; secondly, the effect of a
local topographic model, and, thirdly, the contribution from differences between the
global model and locally measured gravity anomalies, corrected for the attraction of
local topography.

Long wavelength gravity anomalies

The OSUS6E spherical harmonic model of the anomalous gravity field (Rapp &
Cruz, 1986) was used to calculate the global component of the anomalous gravity
field. The model is complete to degree and order 360 and so, in principle, represents

wavelengths longer than about 110 km.

The model field was calculated at 50m intervals along the ellipsoidal normal for
heights between 0 and 700m above the ellipsoid. (The ellipsoidal height of the centre
of the tower is about 364m.) This procedure required a high computational precision
because each point requires the summation of more than 130000 terms. The
anomalous gravity tield was found to be

33



= z 2 -2
Agnsusgse = 31945.54 - 0.35926 h + 0.00000342 h* nm.s

The effect of the long wavelength components of the anomalous gravity field was thus
a decrease of 17.9 nm.s™? between the lowest and highest station in the tower.

GEOMETRICAL MODELS OF LOCAL STRUCTURES

Overview

Megget Water reservoir lies in a valley with the characteristic U-shaped cross-section
of a glacial feature, having been deeply cut into Silurian greywackes during the
Pleistocene. Nearby hills on its flanks rise 500 m above the valley floor and, although
the draw-off tower in which the gravity measurements were made lies near the centre
of the valley, analysis of the gravitational effect of topography requires special care.
For all computations, a provisional value of 6.673 10°'* m?® 572 kg™ was adopted
for the gravitational constant.

Distant topography

The topographic model for distant topography was constructed from lkm square
vertical prisms, whose height was estimated manually from 25’ (7.6m) contour maps.
These mean elevations were refered to a quadratic surface locally representing the
curvature of the geoid. The gravitational attraction was computed from the full
expression for a cuboid in an inner zone, with successive zones using the cylindrical
sector and then the vertical line element approximations. A near zone, 8 km by 10
km, was excluded from the prism model which was extended to a distance of about
120 km before the incremental contribution differed by less than 5 nm.s”? between

the top and bottom of the tower.

The contour integration program

The gravitational attraction of the remaining parts of the natural topography, together
with models for the reservoir embankment, draw-off tower and water were
determined using a development of the contour integration algorithm of Talwani &
cwing (1960). This involves analytic integration for the attraction of a horizontal
polvgonal lamina, combined with numerical integration over the vertical coordinate
to find the bulk auracuon. Extensive numerical comparisons were made with
spheres, cvlinders, cuboids, and parabolic domes (for whose gravitauonal attraction
analytic formula exist), in order to find an adequate numerical integration routine
and determine the necessary density of contour information.

Oldham (personal communication, 1988) reports that the results of our version of
the contour integration program were insignificanty different from those obtained
with an anlytical surface integration over the triangular facets of a polyhedron defined

by the same digitised contours.
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Intermediate topography

Within a region defined by the National Grid coordinates [315 km < Easting < 325
km, 617 km < Northing < 625 km], but excluding an innermost rectangle 750 m by
1025 m, a topographic model was constructed by digitising at 25 m intervals along
every 100’ (30.5 m) contour on Ordnance Survey maps. I[n the region later occupied
by the western (most distant) end of the reservoir, 25’ (7.6 m) contours were digitised.

Local topography

Before construction of the reservoir embankment was begun, control pillars were
established on the adjacent hillsides and levelled in to Ordnance Survey bench
marks. A photogrammetric survey was then carried out. from which 2 m contours
were mapped at a scale of 1:1250. This map, and all subsequent construction work,
were referred to a local coordinate system parallel to the National Grid. The precise
National Grid coordinates of the origin of the local system were no longer available
but comparison of numerous landmarks common to both the local and Ordnance
Survey maps determined them with a standard deviation of 0.7 m.

After the dam was complete but before the reservoir was full, a second
photogrammetric survey was made and a second contour map produced. There were
additional levelled control points on the dam, new access roads and water channels.
From these two surveys, a model of the local topography was constructed by digitising
at 2.5 m intervals along every 2 m contour on both maps. The natural topography
was defined by the first photogrammetric survey, or the foundation of any subsequent
earthworks or construction.

The reservoir embankment

The reservoir embankment has a triangular cross-section which, at the centre of the
valley, is about 60 m high and about 160 m wide. The embankment was constructed
from compacted soil and gravel with a central vertical membrane of asphalt 700 mm
thick. At the base of the membrane is a concrete inspection gallery running the
length of the dam and set into grouted bedrock. From the control room on the
down-stream face of the embankment, a second inspection and access gallery runs
beneath the dam to the draw-off tower rising from the reservoir floor. The drinking
water aquaduct and overtlow spillway lie beneath the floor of this gallery.

The model for what is loosely called the dam includes all made ground: it
includes superficial earthworks for embankments for new roads, water channels and
landscaping, as well as the reservoir embankment itself. The model is essentially
defined from engineering drawings, with additional control from the two

photogrammetric surveys.

The water draw-off tower

The ccncrete tower consists of two concentric circular cylindrical shells mounted on
an octagonal base. The outside diameter is 24 m and the walls are 700 mm thick.
Drinking water is drawn off on the up-stream side by ten 1400 mm diameter pipes,
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two at each of five levels at 8 m intervals from the bottom of the reservoir. Where
the water enters, the two cylindrical shells are connected by a solid concrete sector
but, elsewhere, the cavity between them serves as an overflow spillway. There is a
further inlet to the spillway at the base of the tower to provide a controlled volume of
water for the river downstream. The surface level and volume flow of drinking water
and compensation water are monitored continuously. :

Gravity measurements were taken about 1.4 m west of the vertical axis of
symmetry of the cylinders on concrete tloors at seven levels in the tower. The axis of
maximum symmetry was inaccessible. Although the tower geometry in superficially
simple, an embedded lift shaft, pipes, stairs and galleries added to its complexity.
Ultimately, more than 2 Mbyte of information was used to construct a model for the
tower: digital horizontal cross-sections, determined with 1 mm precision from
engineering drawings and randomly checked at the 10 mm level with confirmatory
tape measurements, were prepared at 200 mm vertical intervals. To recover the
detailed shapes of local horizontal structures, additional cross-sections were added at
20 mm intervals where necessary.

Water

The model for water in the reservoir consisted of three parts. The most distant part
was defined by 25 (7.6 m) contours from Ordnance Survey maps. The main
contribution came from the area of the photogrammetric survey surrounding the
tower. Finally, a small but not insignificant effect came from water in the pipework
of the tower.

During the gravity observation programme, the water level was 1.72 m below the
overflow datum at 334.00 m above sea level. For the most distant part of the model,
defined by 25’ contours, the effect of water filling the reservoir to 10257, 1050°. 1075°
and 1100’ (335.28 m) was computed and the required effect of water at 332.28 m was
found by linear, quadratic and cubic interpolation polynomials. The interpolation
errors appeared to lie within 5 nm.s % at each site. The same interpolation procedure
was used for the main contribution defined by the 2 m contour model, again with
insignificant errors. '

Water entering each of the drinking water inlet pipes is monitored continuously
for temperature (to 0.1K), pH and gas content. [t was apparent that the water was
well mixed. with a top-to-bottom variation of temperature of less than 0.2K about a
mean of 7.2°C. The atmospheric pressure was measured with precision surveying
barometers with an accuracy of about 0.lbar. The density of water in the reservoir
was thus determinable as (0.99988 + 0.00001) Mg.m™>.

ANALYTIC CONTINUATION OF THE RESIDUAL BOUGUER ANOMALIES

In order to compute the variation with height of the residual Bouguer anomaly, all
point gravity observations within the 126 km square [258 km < Easting < 384 km,
560 km < Northing < 686 km] were extracted from an integrated gravity database
(Hipkin & Hussain, 1982). Within this area, there are 8796 stations, mostly observed
by the British Geological Survey or Edinburgh University. The mean station density
of 0.55 km™? was moderately uniform despite the difficult terrain because of
helicopter and pedestrian surveys. All data were uniformly reduced, with an adopted

36




terrain density, constant throughout, of 2.7 Mg.m™®. The reduction also adopted a
value of 6.673 10°'! kgm?®.s™? for the gravitational constant. Both figures are
identical to the ones used to calculate the attraction of the topographic model, so that
the combination is independent of these choices. Terrain corrections were completed
to at least 22 km and usually to 64 km. Although duplicate and very closely spaced
stations had been eliminated from the database, consistency between the two main
surveys had previously been demonstrated at 100 - 400 nm.s ? level, compatable with
their target accuracy of 500 nm.s ? (0.05 mgal).

The variation of the Bouguer anomaly with height in the tower was found as a
by-product of a transformation algorithm described in Hipkin (1988). This Fast
Fourier Transform routine was designed to transform point observations irregularly
distributed over a topographically irregular surface to a regularly gridded
representation on a plane. [t was applied to the 126 km square of data with four
options: first, the interpolation grid size was varied between 1 and 2 km; secondly,
variable marginal tapering and optional linear detrending were applied befors
Fourier transformation; thirdly, the altitude of the horizontal plane was varied
between 0 amd 700 m above sea level, and, finally, the vertical gradient was
determined either as a first derivative on the plane or by linear interpolation between
values on two horizontal planes. These options generated slightly different estimates
for the vertical gradient of the residual Bouguer anomaly: the mean and standard
deviation of six estimating procedures were:

Ag(h) - Ag(0) = -(1.88 + 0.32) h nm.s” 2,

with a gradient range between -2.39 and -1.51 nm.s"*/m. The option likely to give the
best result involved interpolation between planes separated by a 65 m vertical interval
covering the tower measurements and used a detrended 2 km grid with a 10%
marginal taper; it gave -1.85 nm.s"?/m.

This scatter reflects the fact that the data spacing was not quite close enough in
the region around Megget Water to achieve the desired accuracy: one standard
deviation in the Bouguer anomaly gradient generates 16 nm.s”? between the top and
bottom of the tower. =

The effective topographic density

The constant density used in the topographic model was varied until its attraction
calculated in the tower most closely approximated that of the combination of the
Bouguer anomaly gradient of -(1.88 £ 0.32) nm.s */m and the model using a density
of 2.7 Mg.m®. This defined a locally effective mean topographic density of (2.7082 +
0.0014) Mg.m™3. '

This figure can be compared with a direct gravimetric density determinaton in
the area. All 196 point gravity observations in a 20 km square surrounding the tower
were assumed to generate a Bouguer anomaly described bv a second degree
polynomial surface. The terrain densitv was then adjusted in a least squares
miminisation of gravity residuals. This gave a local regression density of
(2.7094 + 0.0030) Mg.m™®. (Note that both of these methods really estimate the
product of density and the gravitational constant. The given value of density refers to
the adopted value of the gravitational constant quoted above.)

The two methods of estimation are conceptually different: the second method
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assumes that the topographic density is constant, whereas the first uses data which
have not involved this assumption but merely approximate the result as a single
effective density. [t is however clear that the density really is unusually uniform:
substituting the effective density into the topographic model calculation gives
residuals against the original values with a standard deviation of only 7.5 nm.s™? at
the seven sites in the tower. '

It was anticipated that the bedrock had uniform physical properties over a wide
area. The Silurian greywacke formation, which some seismic models imply extends
down to about 10 - 15 km, also extends over much of southern Scotland and
Northern Ireland. Even on this scale, the density varies very little: Hipkin & Hussain
(1982) used the regression density technique on 34 separate 10km squares and found
an overall average of (2.728 £ 0.045) Mg.m™® from 1688 gravity observations.

In the Megget Water valley, the conditions are particularly favourable: because of
glaciation, the rockhead has been exposed from a depth of burial of at least 300 m in
geologically recent times and so is virtually unweathered. Nevertheless, finding both
estimates of the effective topographic density so similar and so well determined is
particularly fortuitous and is crucial to the ultimate success of the experiment. [t is
almost always possible to find a 'pathological’ density distribution which generates a
measureable gravity field at some points and none at others. For this reason, any
experiment based on predicting the external field from a finite set of point
measurements needs recourse to a hypothesis that the field varies ’'reasonably’
between the observation points. Observable uniformity of the topographic density is
prima facie evidence that it does.

GRAVITY MEASUREMENTS

Gravity was measured at 7 sites within the tower and at 14 sites on the reservoir
embankment. Analysis of the latter is incomplete and this paper gives a preliminary
interpretation based on the tower measurements alone. The observation were made
in a symmetrical triple looping sequence with the LaCoste & Romberg gravity meter
G-275. This meter has been calibrated against the [GSN71 scale with a precision of 2
parts in 100000 (Hipkin et al 1988). The possibilty of small gear train errors is
currently being investigated by comparison with the gravity meters D-145 and D154,
which have twin calibrated dials and electrostatic feedback. Given the gravity range
of about 9 dial turns (90512 nm.s 2) in the tower, the periodic screw errors are likely
to be less than SO nm.s 2. Network adjustment using robust statistics with &
posteriori weighting shows that the data have moderately good internal consistency,
with a standard error of between 16 and 29 nm.s 2 at the tower sites. [t is anticipated
that additional observation sequences will halve this error.

RESULTS AND DISCUSSION

Figure 1 shows residuals between observed and calculated gravity at each of the 7
tower sites, together with the effect of increasing or decreasing the gravitational
constant from the adopted value of 6.673 107** m? 52 kgt. Although adjustment
would imply an insignificant correction to the laboratory value, the residuals are not
only unacceptably larger than the observational errors, but alsc show systematic
deviations in mid-elevations. The rate of variation with height in the upper half of
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Figure 1: Gravity residuals in Megget Water Tower
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the tower shows that the error must lie in computing the effect of the tower itself and,
once any error is admitted. doubt is cast on the whole calculation. The experiment
will only be convincing if the residuals have the magnitude expected from the
observational data and are randomly scattered with respect to height. A probable
source of the error in the tower model has now come to light: the present solution
involves a uniform density found by regression, whereas the design specifications for
steel re-enforcing show a progressively larger proportion of steel towards the base.
The attraction of the tower will now be recomputed after modifying the effective
density with height.

[f a convincing balance of calculated and observed gravity can ultimately be
achieved, it will imply that sources at distances ranging from a few centimetres in the
tower to many tens of kilometres in the natural topography have all satisfied the
inverse square law. The potential precision of better than 1 part in 1000 for the
gravitational constant, combined with a demonstrable ability to determine the
topographic and subsurface effects, makes the submerged tower form of experiment a
very attractive approach for testing Newton’s law of gravitation. ~
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