Table 2 Oligosaccharide linkages for culture and surface seawater UDOM

<table>
<thead>
<tr>
<th></th>
<th>Culture</th>
<th>Oosterschelde</th>
<th>Hawaii</th>
<th>Woods Hole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T*</td>
<td>B</td>
<td>NB</td>
<td>T</td>
</tr>
<tr>
<td>Arabinose (f)</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Arabinose (pH)</td>
<td>25</td>
<td>33 (1, 3)</td>
<td>42 (1, 3)</td>
<td>31</td>
</tr>
<tr>
<td>Rhamnose</td>
<td>22</td>
<td>4 (1, 3)</td>
<td>43 (1, 3)</td>
<td>54</td>
</tr>
<tr>
<td>Fucose</td>
<td>36</td>
<td>29 (1, 3)</td>
<td>27 (1, 3)</td>
<td>34</td>
</tr>
<tr>
<td>Xylose</td>
<td>50</td>
<td>24 (1, 3)</td>
<td>3 (1, 3)</td>
<td>24</td>
</tr>
<tr>
<td>Mannose</td>
<td>11</td>
<td>30 (1, 3)</td>
<td>31 (1, 2)</td>
<td>9</td>
</tr>
<tr>
<td>Galactose</td>
<td>33</td>
<td>29 (1, 3)</td>
<td>10 (1, 3)</td>
<td>9</td>
</tr>
<tr>
<td>Glucose</td>
<td>21</td>
<td>64 (1, 3)</td>
<td>15 (1, 3)</td>
<td>18</td>
</tr>
</tbody>
</table>

Each entry shows the percentage per sugar of a particular linkage type, followed (for branched and non-branched types) by numbers in parentheses describing the linkages. *T*, terminal; *B*, branched; *NB*, non-branched.

†Furanose form.
††Pyranose form.

Previous studies of DOC composition and cycling have emphasized the role of glycerolization reactions in the production of structurally complex, metabolically resistant organic matter. The recent report of bacterial pironin-like proteins dissolved in seawater demonstrates the potential for a contribution from resistant biopolymers. Further study extends this concept to a quantitatively significant fraction of DOC, where a family of closely related acyl-

Changes of the Earth's rotation axis owing to advection of mantle density heterogeneities

Bernhard Steinberger* & Richard J. O'Connell

Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

Polar wander, the secular motion of the Earth's rotation axis relative to its surface, has been studied for many years. Dynamical arguments\(^1\) show that polar wander can arise from the redistribution of mass in a plastic deformable Earth, the rate depending on both the rate of mass redistribution and the rate at which the Earth's rotational bulge can readjust to the changing rotation axis. Here we use a viscosity structure obtained through geoid modelling,\(^1\) a mantle flow field consistent with topographic anomalies,\(^2\) and time-dependent lithospheric plate motions\(^3\) to calculate the advection of mantle density heterogeneities and corresponding changes in the degree-two geoid during the Cenozoic era. We show that the rotation axis will follow closely any imposed changes of the axis of maximum non-hydrostatic moment of inertia. The resulting path of the rotation axis agrees well with paleomagnetic results,\(^4\) with the model predicting a current rate of polar motion that explains 40% of that observed geodetically.\(^5\)

The rotational bulge tends to stabilize the location of the pole, but the bulge can readjust by plastic flow to a change in the position of the rotation axis. If the timescale for the adjustment of the bulge is short enough, the location of the rotation pole is determined by the location of the greatest principal moment of inertia based on the non-hydrostatic density distribution (that is, with the contribution of the hydrostatic bulge removed). The non-hydrostatic moments of inertia, however, depend on the density distribution in the Earth's mantle, which may change with time owing to thermal convection and tectonic plate motion. The density distribution in the Earth has been inferred from seismic velocity variations and has been related to the non-hydrostatic geoid with dynamical models\(^4,5\). In these models the density anomalies cause flow in the viscous mantle, and the consequence is that the density anomalies are carried by the flow, and their distribution is time-dependent.

The path of the axis of maximum non-hydrostatic moment of inertia in Fig. 1 was calculated using the following steps. (1) The present-day distribution of shear velocity heterogeneity in the mantle is obtained from seismic tomography\(^6,7\). (2) Seismic velocity anomalies are converted to density anomalies. (3) Time-dependent plate velocities and geometries\(^8\) are used to model plate motions during the past 64 million years. (4) A previously proposed viscosity structure (Fig. 1) is adopted for the mantle. (5) A mantle flow field that satisfies the boundary conditions on surface plate velocity and is driven by the internal density heterogeneities is calculated\(^9\). (6) The mantle flow field is used to advect the density field back in time from the present. (7) A geoid kernel (Fig. 1) is used to calculate the degree-two non-hydrostatic geoid from the density field at each time of the calculation. The opposite signs of the kernel in the upper and lower mantle mean that areas of low density in the lower mantle and of high density in the upper mantle cause positive geoid anomalies. (8) The difference between the actual and calculated degree-two geoid coefficients is added to obtain agreement of actual and calculated position of the pole at the present time. (9)

Figure 1 Change of the Earth's rotation axis: results of model calculation compared with paleomagnetic results. The model is based on flow in a viscous mantle driven by density heterogeneities inferred from the seismic tomography model SH12/WM13 (ref. 5); a conversion factor \(\frac{\text{mGal}}{\text{s}} \times 0.2\) from seismic velocity anomaly \(v\) to density anomaly \(\rho\) is used. This value is close to what has been proposed on theoretical grounds and from laboratory experiments\(^6,7\), as well as from modellings the geoid\(^1\). The flow field is also constrained by realistic plate motions during the Cenozoic era, plate reconstructions\(^8\) are inferred from seafloor magnetic anomalies and hotspot traces. The viscosity model used (upper left) is based on models that reconcile the current geoid with tomographic models\(^7\). The geoid kernel (upper right), which includes the effects of compressibility\(^9\), shows the relative contribution of density anomalies at a certain depth to the degree-two geoid\(^10\) (which determines the moments of inertia). The calculated polar wander shown depends primarily on the bipolar nature of the geoid kernel as a function of depth. Any viscosity model that produced the same kernel function and had similar maximum viscosity would produce similar results. For other viscosity models considered, the calculated polar motion was too large to be consistent with observations, even if a very high viscosity \(\sim 10^{26}\) Pa s in the lowermost mantle is assumed. For a larger conversion factor between seismic velocity and density, an increased magnitude of polar motion results, but the direction stays more or less the same. Other tomographic models give similar results, but SH12/WM13 produces the best overall fit. Flow in the upper mantle (largely related to plate motions) and flow in the lower mantle (mostly driven by internal density heterogeneities) produce contributions of similar magnitude to this process.

Figure 2 Rate of polar motion for a viscous, incompressible, rotating Earth model that was in hydrostatic equilibrium before a density heterogeneity corresponding to an inertia tensor element \(I_{zz} = 10^{24}\) kg m\(^2\) was instantaneously imposed. The rate of polar motion \(du/dt\) plotted is the relatively uniform rate after initial transients have decayed, and is controlled by the rate at which the hydrostatic bulge can adjust to the changing rotation axis. The diurnal rotation rate is \(\omega_0\), and the model has a mantle of density 4.424 kg m\(^{-3}\) and a core of density 10,889 kg m\(^{-3}\). Left-hand panel, the dependence on lower-mantle viscosity, \(\eta_m\); right-hand panel, the influence of the depth, \(d_m\), at which viscosity increases in the lower mantle (this figure plots the inverse of the rate of polar motion). Similar results have been used previously to calculate rates of polar motion excited by random subducted slabs for a variety of Earth models\(^11\).
The degree-two non-hydrostatic geoid is converted into the moment of inertia tensor by McCullagh's formula, and the principal axes are calculated.

These calculations are obviously approximate, but they are based on current dynamical models of mantle flow and dynamic support of the geoid. The extension here has to apply the model to previous times and plate configurations by advecting the density field backwards in time. This procedure should be accurate for relatively short times, although it will obviously break down for times longer than it would take a thermal anomaly to develop and rise or sink through most of the mantle. In a similar approach, subduction history has been used to calculate polar motion over an even longer time interval.

The rotation axis will follow the axis of the largest moment of inertia on a timescale governed by the readjustment of the rotational bulge. This in turn depends primarily on the viscosity structure of the mantle. The following considerations most probably rule out a significant difference between rotation axis and axis of maximum moment of inertia.

The rotation axis tends to be nearly aligned with the axis of maximum total moment of inertia, which is the sum of the non-hydrostatic moment of inertia and the larger hydrostatic moment determined by the rotational bulge. The non-hydrostatic moment of inertia consists of an imposed part (which we calculated from the density and flow models) and a part that is due to the delayed viscoelastic relaxation of the bulge after a change of the rotation axis. As the axis of the imposed part of the inertia tensor moves, the rotation axis lags behind it by the angle

$$\theta = \frac{d\varphi}{dt} \frac{1}{\Delta I_{\text{max}}} c_{\text{eqw}}$$

(1)

Here $d\varphi/dt$ is the rate at which the axis of the maximum imposed non-hydrostatic moment of inertia moves, ΔI_{max} is the difference between maximum and minimum principal moments of inertia from the imposed mass anomalies, and the constant c_{eqw} describes the rate at which the bulge adjusts and hence the rate at which the true polar wander occurs in response to a change in the inertia tensor. It can be calculated for Earth models with various viscosity structures. If viscoelastic relaxation can be expressed in terms of eigenmodes, c_{eqw} can be expressed by

$$c_{\text{eqw}}^{-1} = \sum_{i} \frac{c_{i}}{s_{i}} f_{i}$$

(2)

where c_{i} are the eigenmode expansion coefficients of the equilibrium shape minus the elastic deformation that would result if the Earth instantaneously started rotating at its present rate, s_{i} are decay constants and f_{i} are differences between maximum and minimum principal moments of inertia for these eigenmodes. Otherwise c_{eqw} may be determined numerically.

If a mass anomaly is emplaced suddenly, and the rotation vector is primarily in the z-direction, its rate of change will be given by

$$\frac{d\alpha_{0}}{dt} = c_{\text{eqw}} \alpha_{0} f_{0}$$

(3)

where α_{0} is the diurnal rotation rate and f_{0} is the non-diagonal inertia tensor component due to the emplaced non-hydrostatic excess masses. This equation applies to the quasi-steady state motion of the pole after initial transients have died out (that is, when the build up of the non-hydrostatic shape due to the change in the rotation axis is exactly compensated for by viscoelastic decay of the old bulge).

Figure 2 shows the steady state rate of polar motion ($d\alpha/dt - (1/\omega_{0})$) caused by an imposed mass for a variety of Earth models. The rate (and hence c_{eqw}) is inversely proportional to the viscosity of the lower mantle, roughly inversely proportional to the thickness of a high-viscosity layer in the lower mantle and only slightly dependent on upper-mantle viscosity structure.

The Earth's rotation axis moved less than 10° in the hotspot reference frame during the past 50 Myr; equation (1) and inferred values of c_{eqw} from Fig. 2 show that the rotation pole would lag the inertia axis by $\theta < 1^\circ$, even for models with $\eta = 10^{22}$ Pa s in the lower mantle.

It should be noted that equation (3) applies only if the emplacement of mass anomalies is rapid compared with the change of the rotation axis, as would be the case for a relatively high mantle viscosity. We can therefore estimate an upper bound to mantle viscosity. For the observed motion of $\sim 10^\circ$ in 50 Myr (refs 7, 16), the cases considered in Fig. 2, left, yield an upper bound to lower-mantle viscosity between about 3 and 5×10^{23} Pa s. This is not a stringent bound, as considerably slower motion of the rotation axis cannot be excluded, but it is similar to values obtained before.

If the mass anomalies are emplaced continuously at a rate corresponding to a growth rate of the inertia tensor component f_{13}, the maximum rate of polar motion

$$\frac{d\alpha_{0}}{dt} \mid_{\text{max}} \approx 0.47 \sqrt{f_{13} c_{\text{eqw}}}$$

(4)

occurs when the two larger principal non-hydrostatic moments of inertia are almost equal. The difference between instantaneous and gradual emplacement is illustrated in the bottom part of Fig. 3.

Figure 3 shows viscoelastic relaxation and corresponding changes in the rotation axis for a number of cases. We find that the speed at which the rotation axis moves is mainly determined by lower-mantle viscosity, whereas the effects of introducing an internal boundary or varying upper-mantle viscosity, and the effects of differences between viscous and viscoelastic Earth models, are all comparatively small.

The steady-state approximation is valid for times longer than the largest decay time. Unless internal modes are present (for example where there is a chemical boundary; Fig. 3) the largest decay time is small compared with timescales of polar wander, and steady-state is a good approximation. Furthermore, the magnitude of the effect of a chemical boundary is relatively small. We therefore conclude that for a realistic Earth model the angle θ is most likely to be small, even if polar motion is somewhat slowed by an internal chemical boundary, and the path of the axis of maximum imposed moment of inertia can be compared directly with palaeomagnetic results.

Observations of polar wander have been inferred from palaeomagnetic apparent polar wander paths, assuming that the rotation and palaeomagnetic axes are essentially the same. If there were no plate motions, the interpretation of these would be straightforward, but the determination of polar wander on a planet with a mobile surface is more complicated. Two reference frames have been proposed for plate motions: a mean lithospheric frame, which is the average of all plate motions, and a hotspot frame that assumes that hotspots are fixed in location by a lower mantle that is essentially stationary relative to plate motions. Early work suggested that there is no significant motion of the rotation axis in the mean lithospheric frame, whereas there is motion of the rotation axis with respect to the hotspot frame. More recent results, however, indicate that both reference frames and the rotation axis all move with respect to each other. Results from models of plumes and hotspots indicate similar motions.

The comparison between the model results and palaeomagnetic observations of polar wander is shown in Fig. 1. The scatter between the palaeomagnetic curves from individual continents is larger than the average motion, and there are also substantial differences between results by various authors. The good agreement between modelled and observed polar motion in Fig. 1 was obtained with a geoid kernel that reverses sign, with roughly equal magnitude on either side, as shown in Fig. 1: this behaviour is a consequence of the viscosity model used, which has also been used to model the present geoid.

The rate of polar motion in recent times has been directly
measured by astronomical and geodetic techniques, and it is
roughly in accord with the longer-term motion inferred from
palaeomagnetic observations. The current polar motion is an
important constraint on current models of mantle rheology inferred
from observations of post-glacial isostatic readjustment. Our
results yield a current rate of polar motion of 0.39° per Myr towards
24°W, with an average of 0.37° per Myr towards 24°W over the past
1 Myr. This is a substantial fraction of the value 0.95° per Myr towards
76°W that is used to constrain rebound models. Figure 1 shows that
rates of this magnitude characterize the polar motion inferred from palaeomagnetic results as well as the model results for
the past 50 Myr or so. Thus a considerable fraction of the current
polar motion may represent a secular trend that has existed for
millions of years. The effects of post-glacial rebound would be
superposed on the long-term trend. Coincidentally, the two
motions are similar. Clearly both effects need to be well under-
stood to interpret the current observations properly.

It is apparent that a plausible model of mantle viscosity, coupled
with the time-dependent density distribution implied by the model,
can account for long-term polar wander similar to that observed.
Similar models can predict polar motion that is considerably faster
than observed as well. The remarkable thing about true polar wander may not be that it occurs, but that it is so slow. Our current
models of the Earth's mantle, however, allow us to predict the polar
wander path reasonably well.

Received 31 October 1996; accepted 18 March 1997.

Many dramatic changes in morphology within the genus *Homo* have occurred over the past 2 million years or more, including large increases in absolute brain size and decreases in postcanine dental size and skeletal robusticity. Body mass, as the ‘size’ variable against which other morphological features are usually judged, has been important for assessing these changes. Yet past body mass estimates for *Pleistocene Homo* have varied greatly, sometimes by as much as 50% for the same individuals. Here we show that two independent methods of body-mass estimation yield concordant results when applied to *Pleistocene Homo* specimens. On the basis of an analysis of 163 individuals, body mass in *Pleistocene Homo* averaged significantly (about 10%) larger than a representative sample of living humans. Relative to body mass, brain mass in late archaic *H. sapiens* (Neanderthals) was slightly smaller than in early ‘anatomically modern’ humans, but the major increase in encephalization within *Homo* occurred earlier during the Middle Pleistocene (600–150 thousand years before present (kyr BP)), preceded by a long period of stasis extending through the Early Pleistocene (1,800 kyr BP).

It is generally acknowledged, even by those who have used other methods, that the best means of estimating body mass from skeletal or fossil remains, when feasible, is to use features that have some direct functional relationship to body mass. For hominids, the skeletal dimensions used most often have been lower limb long bone diaphyseal and articular breadths. Diaphyseal breadths of fossil hominids are problematic as body mass estimators because relative to body size they are systematically larger than modern humans, probably as a result of increased mechanical loading. In contrast, articulations are much less environmentally sensitive, and thus are potentially better body-size indicators. The articular dimension used here as a body-mass estimator is femoral head bread because it is available for many fossil *Homo* specimens, is easily measured and highly reproducible, and because several investigators have provided information on the relationship between femoral head breadth and body mass in modern humans (see Methods).

The second method used here to estimate body mass does not rely on any assumptions about the mechanical relationship between a particular skeletal feature and body size (support of body weight). Rather, in this approach body mass is estimated directly from reconstructed stature and body breadth. A modern worldwide anthropometric sampling of 56 populations/specific means was used to derive multiple regressions of body mass on stature and bi-iliac (maximum pelvic) breadth (Methods).

Figure 1 compares femoral head and stature/bi-iliac estimates of body mass for 75 Pleistocene *Homo* specimens. The mean absolute difference between estimates is about 5 kg (7.6%), and the mean directional difference is less than 1 kg (1.1%). Paired t-tests between results are not significant (P = 0.30). Thus, equations based on femoral head size and stature/bi-iliac breadth yield similar body mass estimates when applied to Pleistocene *Homo*, with very little systematic bias. Because the two techniques are based on different rationales and skeletal dimensions, yet nevertheless converge on the same result, this increases confidence in both.

Skeletal dimensions for 163 *Pleistocene Homo* specimens, dated 10–1,950 kyr BP, were derived from previously published sources and personal measurements. Most regions of the Old World (except Australia) are represented, although the majority of the sample is from Europe (55%), with the remainder from Africa (27%), western Asia (15%) and eastern Asia (3%). (Data for individual specimens are given in Supplementary Information.) The resulting body mass estimates are shown in Fig. 2a, together with 51 sex/population-specific means for a worldwide sampling of living humans (ref. 16, excluding five Pygmy data points). More than three-quarters (125/163) of the Pleistocene specimens fall above the living human mean. On average, Pleistocene specimens are 7.4 kg larger (mean ± s.e., 65.6 ± 0.7 kg) than living humans (58.2 ± 1.0 kg), a highly significant 12.7% difference in body mass (P < 0.0001, t-test).

There is some indication in Fig. 2a that body mass is lower in the Early Pleistocene and rises to peak values in the Late Pleistocene. However, this is largely an artefact of two confounding variables: sex...